Description of Courses

SEP503 Computer Science for Software Engineers

This course offers various background topics needed for software engineers to start a graduate level study of
software engineering. The main topics of the course are 'Advanced Discrete Mathematics, UML 2.0 and Design
Tool, Advanced Data Structure and Algorithms, Program Execution, Object-Oriented Method.' In addition, time
permitting, the following topics that draw much attention today in software engineering field may also be covered:
Middleware, Design Patterns, Component Technology.

SEP537 Models of Software Systems

Computer Scientists have long investigated the problem of how to automate software development from its
specification to its program. So far the efforts were not fully successful but much of the results can be fruitfully
applied to development of small programs and critical small portions of large programs. In this course, we learn
how to formally write requirements, how to formally model specifications and how to rigorously verify that the
models have the required properties.

SEP539 Methods: Deciding What to Design

Practical development of software requires an understanding of successful methods for bridging the gap between a
problem to be solved and a working software system. In this course you will study a variety of ways to
understand the problem you're solving, the various factors that constrain the possible solutions, and approaches to
deciding among alternatives.

SEP591 Managing Software Development

Large scale software development requires the ability to manage resources - both human and computational -
through control of the development process. This course is a breadth oriented course, designed to help
technically-trained software engineers to acquire the knowledge and skills necessary to lead a project team,
understand the relationship of software development to overall project engineering, estimate time and costs, and
understand the software process. The nature of software development is sufficiently unique to require specialized
management techniques, especially in the areas of the estimating and scheduling.

SEP601, 602, 603 Software Development Studio I, II, III

Software Development Studio provides students with a laboratory for direct application of concepts learned in core
courses. Teamwork, organization, and the use of disciplined software processes are stressed in studio project work.
Software Development Studio spans the entire MSE program over an academic year, consisting of Software
Development Studio I, II, and III for the Fall, Spring, and Summer semesters respectively. Software Development
Studio acts a laboratory where students apply knowledge gained from core and elective courses in realistic, yet
monitored, environments. Former and or practicing professionals are selected to mentor each Studio project,
providing team as well ad individual guidance. With their significant industrial experience, mentors bring their
experience to bear in guiding students in their application of methods, techniques, and technologies learned in the
classroom to real-world problems encountered in Studio.

SEP604 CMU Software Studio

This course is required to be registered with SEP603 Software Development Studio III. In this course, CMU
mentors give guidance to the studio team members by having regular meetings either via online or by visiting the
students.

Analysis of Software Artifact

Analysis is the systematic examination of an artifact to determine its properties. This course will focus on analysis
of software artifacts--primarily code, but also including analysis of designs, architectures, and test suites. We will
focus on functional properties, but also cover non-functional properties like performance and security. In order to
illustrate core analysis concepts in some depth, the course will center on static program analysis; however, the
course will also include a breadth of techniques such as testing, model checking, theorem proving, dynamic
analysis, and type systems. The course will balance theoretical discussions with lab exercises in which students will
apply the ideas they are learning to real artifacts.

Architecture for Software System

Successful design of complex software systems requires the ability to describe, evaluate, and create systems at an
architectural level of abstraction. This course introduces architectural design of complex software systems. The
course considers commonly-used software system structures, techniques for designing and implementing these
structures, models and formal notations for characterizing and reasoning about architectures, tools for generating
specific instances of an architecture, and case studies of actual system architectures. It teaches the skills and
background students need to evaluate the architectures of existing systems and to design new systems in principled
ways using well-founded architectural paradigms.

Practicum Proposal

In this course, students propose a project to work on during their practicum courses. This will take the form of a
formal document and will be considered the first deliverable of the practicum. The proposal must include an
executive summary, a definition of the work to be completed, including deliverables, timelines, reviews, and final
report.

Practicum I, II

Practicum is the capstone demonstration by the student of their abilities as a software engineer. The purpose of the
practicum is for the student to demonstrate command of the material learned in the core and electives courses.
Students will do so by solving a substantial practical problem in a realistic setting with a focus on understanding
major aspects of the software development life cycle in detail. Practicum is intended for individual students or
small teams of three or four students.

* The descriptions of elective courses, mandatory general courses and research courses is the same as them
of the Software Graduate Program's courses.

